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Some new results in non-commutative algebra in the 
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Received 5 July 1977, in final form 17 January 1978 

Abstract. An explicit and finite algorithm is derived, allowing the exact expansion of 
z = exp(x + A y )  for non-commuting x and y, up to second order in A.  Such an expansion is 
the inverse of the usual Hausdod-Baker-Campbell formula. The matrix elements of z 
are computed, and as an application, the Duhamel two-point function obtained. 

1. Introduction and summary 

The stronger version of Bogolubov’s inequality (Bogolubov 1970) proposed by 
Roepstorff (1977), involving the comparison between Duhamel and the ordinary 
thermal two-point functions, as well as the generalised approach to Trotter’s formula 
discussed by Suzuki (1976), have revived the interest in the explicit computation of 
operators of the form 

z = exp(x + A y )  (1.1) 
for non-commuting x and y. 

Duhamel two-point function is defined by 
For three such operators representing dynamical variables, say H, A and B, the 

1 a2 T~(~-BH+AA+~~B (A, B ) = -  - )I*=,=O z ah ap 

where 2 = Tr(e-BH) is the canonical partition function for temperature T = 1/p,  and 
H is the Hamiltonian. Obviously, within the context of an application such as that of 
equation (1.2), the calculations are only to be made to second order in the parameter A 
of (1.1). We shall therefore give, in the present paper, the explicit determination of 
both z and its matrix elements in a basis in which x is diagonal, up to the second order 
in A.  Although the problem of computing w =ln(exeAy) over an associative but 
non-commutative algebraic field is an old one (Campbell 1898, Baker 1902, 1903, 
1904a, b, Hausdorff 1906, Dynkin 1947) very little attention has been devoted to 
obtaining an analogous expansion for zB. The inversion however, is not trivial and the 
combinatorics is completely different. 

§ On leave from: Istituto di Fisica del Politecnico, Torino, Italy. 
7 An incomplete form of this, known as the Zassenhaus formula, was first reported by Magnus (1954) and 
was also used by Suzuki (1976). 

0305-4770/78/0006-lOOl$Ol.OO @ 1978 The Institute of Physics 1001 
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The paper is roughly divided into three main distinct parts. First in 0 2, we state 
the problem in the framework of the theory of free Lie algebras. Such a position leads 
to the establishment of a system of linear equations, whose solutions are a set of 
rational coefficients entering the general form of the expansion of z .  The system is 
then solved in 0 3. 

Finally in 0 4, explicit formulae for the matrix elements of z and the two-point 
function (Roepstorff 1977) are derived for the particular case in which x and y are 
assumed to be linear operators in a Hilbert space, with a spectrum formed of eigen- 
values only. 

2. The inverse Hausdorff formula 

As usual the ground ring is assumed to be a Q algebra. Let X = { x ,  y ; x # y} be a 
two-element set, Lx the free Lie algebra over X and LX = n;='=,LI; be the completion 
of Lx. 
2, is structured as a topological group when equipped with the Hausdorff 

composition law and it is known (Bourbaki 1960) that any element z E Lx can then be 
written as a product 

convergent in 2 ,  where 2 is a Hall set relative to X and RY is the basic commutator 
of f~ defined by 4, and & ( A )  is a family of rational numbers. 

We can therefore disregard here the questions concerning the convergence 
domains of the operators in (1.1) which are obviously the same as for the Baker- 
Campbell-Hausdorff formula and are thoroughly discussed by Dynkin (1947). 

We write in general 

where Q,(x, y ;  A )  is an element of the free ring with two generators, x and y, and 
rational coefficients (because of (2.1)). Indeed Q,(x, y ; A )  is a uniquely determined 
polynomial of nth degree in x and y. 

The prime in equation (2.2) recalls that the product is ordered. The existence of an 
expansion such as (2.2) is an obvious consequence of the Hausdorff theorem. In fact 
let $I be the ideal generated by X: the exponential map exp: $I + 1 + $I is a bijection 
and the theorem implies the existence of one and only one element in $I such that its 
exponential equals the product of the exponentials of two elements of $I (Serre 1965). 

Up to second order in A,  we can set 

Qn(X, y ;  A ) = A q ; ' ( x ,  Y ) + A ' ~ ' , ~ ) ( X ,  y)+O(A3) (2.3) 

where q(n) (x ,  y )  again denotes a homogeneous polynomial of degree n in x and y, but 
of degree j in y. Since Q, is a Lie element of the free algebra A,  generated by x and y, 
we can also write 
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l o  n = 2  

where 

and 

N-brackets 

Notice that the degree of both SN and SF) (for all m )  is N + 1. In the present note we 
give an explicit algorithm for computing the coefficients a(") and ar' of equations 
(2.4) and (2.5). The multiple commutators SN and S F )  are related to each other by a 
recursive set of commutation relations, which read respectively 

s N + l  = [SN, X I ;  s1= 1x9 Y 1 (2.8) 
and 

( m ) ,  x ]  for 1 s m d N - 1,  N 3 2 
for m = N, N 3 2 .  (2.9) sF?l={;;: y 1  

By simple induction equations (2.8) generate a recursion relation which can be solved 
explicitly: 

N N 

r = O  
(2.10) 

Then from equations (2.9) and (2 , lO) t  
m N - m - 1  

r = O  s=O S 

y x  ryx +s -7.  (2.11) iX r + s y x  m - r y X N - m - s - 1  + (- 1 ) N - m X  N - m - s -  1 

While the SN are (for different N's) obviously independent of one another, not all the 
SF) are necessary to form a basis of A in that they satisfy a set of linear identities of 
the form 

- [S, ,  S , ]  = f (-l)i( 7) s93 = 0, 
i = O  I 

(2.12) 

one for each integer v > 0. 
Identity (2.12) can be proved inductively after some algebra. It allows the deter- 

mination of the lower summation limit for k in equation (2.5), such that the terms in 
the sum do indeed belong to a ring of independent operators in the algebra, and 

t An expansion analogous to equation (2.11) has been discussed by Guenin (1968), 
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qL2’(x, y) is in fact a Lie element of A (Friedrichs 1953) 

n b 3  

n = 2  
(2 .13 )  

where [5 ]  denotes the maximum integer less than or equal to 6. 
We have now all we need to tackle the main problem. This can be done by 

expanding both sides of equation (2.2) as formal power series and then comparing on 
both sides the corresponding homogeneous terms of degree n and of given order 
j ( j  = 1 , 2 )  in A. 

Observing that the first order in A of 

N-1 N - 2  N - r - 2  
(x+Ay)” = x N + A  x ~ ~ x ~ - ~ - ~ + A ~  C 1 x ~ ~ x ~ ~ x ~ - ~ - ~ - ~  + O(A 3, (2.14) 

r = O  r=O s=o 

is a linear combination where the Sn only enter, the above procedure leads immedi- 
ately, by the use of equation (2 .10)  to 

- l / n ! .  (2.15) cr (n )  = 

3. Determination of the coefficients at) 

The calculation of the second-order coefficients a?), [ i n ]  C k S n - 2 is more involved. 
First one must write down a recursion relation for qLz’(x, y). After some non- 

trivial algebraic manipulations, this is found to be 

(3 .1 )  

By inserting into (3 .1 )  the explicit expression for qy’(x, y) obtained from (2 .4) ,  (2 .10)  
and (2.15),  equation (3 .1 )  itself can be rewritten in the more compact form 

where the f n  (n  - 1 )  coefficients A::) (0 C r c n - 2; 0 G s n - 2 )  can be explicitly 
calculated by collecting similar homogeneous terms on the right-hand side of equation 
(3.1).  In the further developments we will consider the A!:) as known parameters. We 
do not give their explicit expression here though, since-as will become apparent in 
the following-nly a subset of them corresponding to a special choice of the range of 
indexes r and s will be needed in the final algorithm for the a?’. 
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Recursion relation (3.2) can be solved in the form 
n-2 n-r-2 

q'n2)(x, y ) =  1 w~II , )xryxsyxn-r-s-2 
r = O  s = O  

with 

(3.3) 

(3.4) 

Upon substitution of (3.3) (and (3.4)) on the left-hand side of equation (2.13) and of 
(2.1 1) on the right-hand side, one obtains by comparing similar terms, the required 
system of equations in a t ) .  

Notice that not all the equations one can possibly write in this way are to be used. 
In fact it is easily checked that only [ i (n- l ) ]  are independent (which is just the 
number of unknowns we have), while the remaining [ i ( n  - 1)'+$] are either redun- 
dant, i.e. linear combinations of the previous ones, or they are not equations at all, in 
the sense that the unknowns do not appear (have coefficient zero) and they reduce to 
identities in the w::). 

One possible choice of the indexes r , s  which singles out all the necessary and 
sufficient equations can be compactly written as 

a, = T,A, (3.5) 
where a, and A, are [t(n - l)]-component vectors of the form 

respectively, and T, is a [+(n - l)]  x [$(a - l)] matrix whose non-zero elements are 
given by 

(3.7) 
In other words T, is triangular and non-singular. The simple inversion of equation 
(3.5) then gives 

(3.8) 
Now, for the relevant subset of indexes s = 0,O C j S [$(n - 3)] 

and, inserting into (3.4) and (3.8), we can finally write (3.8) in the form 

(3.9) 
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Equation (3.10) is the algorithm for explicit computation of 4? (x ,  y ) ,  by ( 2 . 1 3 ) ,  
for any n.For the sake of convenience we list in table 1 the numerical values of 
Pp’=n!ay(kn) for 3 s n s 1 2 ,  for all k (of course n = 2  is not included because no 
multiple commutator of degree two including two y’s exists). 

C Buzano, M Rasetti and M Vadacchino 

Table 1. S f ’ =  n!crf’  

6 7 8 9 10 

~ ~~~ 

3 -2 
4 -3 
5 -6 2 
6 -10 5 
7 -20 25 -11 
8 -35 49 -21 
9 -70 154 -126 34 

10 -126 294 -246 69 
11 -252 798 -1002 573 -127 
12 -462 1518 -1947 1133 -253 

4. Matrix elements and the two-point function 

In most of the physical applications, x is a linear self adjoint operator in a Hilbert 
space, whose spectrum is formed by eigenvalues only. Hereafter we compute the 
matrix elements of t up to second order in A under this hypothesis. Even though the 
case when x is a generic self adjoint operator should require only minor formal 
variations, it will not be treated here. 

In order to do so, we choose a complete, orthonormal basis { l j ,  m)}E X where X is 
the Hilbert space in which x and y are acting, namely 

x (  j m )  = xiljm); ((jm l j’m’) = S ~ ~ ( S , ,  ; Cl jm)( jm I = I ) .  

m labels the ni vectors in X corresponding to the same eigenvalue xi. 

im 

Then we define three auxiliary functions 

where g N ( v )  and e N ( T )  are Nth  degree polynomials defined by 

(4.2) 

(4.3) 
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and 

respectively. Notice that %&(I)= -(2+N)-’, and e N ( 7 ) )  is connected with the 
incomplete gamma function (Abramowitz and Stegun 1965). 

( jm  )ex+Ay 1 j ’m’)  

Finally we can compute ( jml z l j fmf ) .  After some algebra we find 

where 

(4.7) 

Af A f (A, A’) = G (A’ - A, -) - G (A’ - A, =) - A - A  

(4.8) 
1 1 1  

A A (  2 2 
+- - - - -F(-AAr)-  eA’-A + E ( - A ,  A ) +  e”> 

and A = xi - x i ”  and Af = xis - xi”. 

- P H , y = A + k B / A )  
As an application of (4.7) going back to equation (1.2) we have (setting x = 

and we find the expression-consistent with the known integral representation of the 
two-point function (Bogolubov 1970) 

(A, B )  = - 1 1 (( jm [ A  I j”m”)(j”m”lB I j m )  + (j“m”1A I j m ) ( j m  IB I if“”)) -. 1 exi - exi’ 
2 2  jm j’”” xj - X j ”  

(4.10) 

Equation (4.10) was obtained from (4.7) observing that 

1 3 1  e-A+A-l  
A 2 2  

(4.11) 
A2 

f(A, A)=?( g ( A ) - - - - F ( - A 2 ) + e A + E ( - A ,  A)) = 

being 
m 

g ( A ) =  2 1 c u $ ~ - ~ ’ )  A2’+’. 

Notice that only coefficients of the form 

s = l  

( 2 s + l )  - [(-1)s(2s-1)-1], 
(2s + l)! S 

ff 2s-1 

(4.12) 

(4.13) 

namely those appearing in odd positions on the main upper diagonal in table 1,  enter 
equation (4.12); so that the compact form (4.11) for f(A, A) can be derived. Naturally 
when the algebra A can be integrated into a finite group, and y is a tensor operator of 
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such a group, the matrix elements in (4.7) and (4.10) can be written-by the Wigner- 
Eckart theorem-as the product of a reduced matrix element ( ( j ~ ~ y ~ l j ” ) ,  ( j ” 1 l y ~ ~ j ’ ) )  
independent of m, m’ and m”, times a Clebsch-Gordan coefficient of the group itself. 
The sums over mrr can then be executed, and the right-hand side of equation (4.7) 
does indeed contain only one sum (over j ” ) .  
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